

Associations between Food Environment, Dietary Diversity, and Nutrient Intake among People Living with HIV in Dar es Salaam, Tanzania: Results from the DECIDE Study

Julieth B Itatiro¹ Ramya Ambikapathi², Victoria Kariathi¹, Crystal L. Patil⁴, Nilupa S. Gunaratna², Savannah L. Froese^{2,3}, Cristiana K. Verissimo³, Morgan Boncyk², Medina Wandella¹, Germana Leyna¹

¹Tanzania Food and Nutrition Centre, Tanzania, ²Department of Public Health, Purdue University, USA, ³Department of Nutrition Science, Purdue University, USA, ⁴ Department of Women, Children & Family Health Science, University of Illinois Chicago, USA

#ANH2021

Background

- Adequate nutrient intake remains a challenge for People Living with Human Immunodeficiency Virus (PLHIV).1
- PLHIV depend on good nutrition and higher dietary quality for better health outcomes and treatment adherence.3
- The Food Environment (FE) plays a major role in shaping individual dietary quality (diversity and nutrient adequacy). 1,2

Research Aims

Examine FE metrics in relation to:

- Minimum dietary diversity score
- Micronutrient adequacy ratio for vitamin A, vitamin C, Calcium, Iron and Zinc

Socio-demographic characteristics ΑII Male **Female** Variable Name N=239 n=61 n=178 Data presented as % 40.4 44.5 38.9 Age (years)[^] (10.6)(10.5)(10.8)HIV (years)[^] 5.5 (4.9) 4.7 (4.6) 5.7 (5.0) 25.5 74.5 Sex **Education** None/incomplete 19.7 9.8 23.0 Primary/Complete 57.3 60.7 56.2 standard 7 Secondary and 23.0 29.5 20.8 above Head of the 46.9 72.1 38.2 household **Home Garden** 28.2 31.2 27.5 Adequate Dietary 20.4 20.0 20.6 Diversity (n=230)

Diversity and Density of Food Vendors by Distance from **Respondent Households**

Type of Vendor Data presented as Median (Q1, Q3)	200 meters	500 meters	1000 meters
Diversity [^]	0.86 (0.07)	0.85 (0.05)	0.82 (0.04)
Semi &	19	144	477
informal	(13, 33)	(95, 166)	(350, 589)
Informal	5	39	150
vendors	(3, 10)	(27, 54)	(106, 215)
Semi	16	92	298
formal	(8, 24)	(67, 121)	(226, 390)
Formal	16	102	336
	(9, 20)	(68, 124)	(263, 421)
Vegetable	6	102	336
	(4, 10)	(68, 124)	(263, 421)
Leafy	2	18	69
greens	(1, 4)	(15, 26)	(57, 88)

[^] Data presented as mean (std dev)

- nttp://anhnutr Heal Acad Food Environment research in low and
 http://anhnutr Heal Acad Food Environ Work Gr. Published online 2017:1-14.

 academy.org/sites/defquit/files/FEWG TechnicaBrief_low.pdf%DAhttp://www.cencedirect.com/science/
 farticle/pii/8978012384947203068

 Ambikapathi R, Shively G, Leyna G, et al. Informal food environment is associated with household
 vegetable purches patterns and dietary intake in the DECIDE study: Empirical evidence from food vendor mapping in peri-urban Dur es Salaam, Tanzania. Glob Food Sec. 2021;28(December 2020):100474.

 doi:10.1101/j.gj. 2020.100474

 Bivoltisi A, Cervigni E, Trapp G, Knuiman M, Hooper P. Ambrania
 intakes amona admite. Pract.
- doi:10.1016/gfs.2020.100474

 BivOltisis, A. (criving I, Trapp G, Knuiman M, Hooper P, Ambrasini GL. Food environments and dietary intakes among adults: Does the type of spatial exposure measurement matter? A systematic review. Int J Health Geogr. 2018;17(1):1-20. doi:10.1186/s12942-018-0139-7

 FAQ, 380 FHI. Minimum Dietary Diversity for Wamen: A Guide for Measurement., 2016.

 http://www.fao.org/3/i-18486e.pdf

 Ons. Nutrient requirements for people living with HIV / AIDS. World Heal Organ. Published online 2003.

Methods

Data from the Diet, Environment, and Choices of Positive Living (DECIDE) Drivers of Food Choices study among PLHIV (N = 239) in peri-urban Dar es Salaam (March – June 2019)

- Data Collection & Management
 - 24hr dietary recall (dietary intake)
 - Minimum Dietary Diversity score (>=5 food groups out of 10 food groups, based on the Minimum Dietary Diversity for Women (MDD-W)4)
 - Nutrient adequacy ratio (NAR) ratio of individual nutrient intake to the recommended nutrient allowance5
 - Geospatial Tablet-based Food Environment (FE) survey
 - Type of vendors formal, semiformal & informal
 - Food vendors Density within (100m to 1000m)
 - Food vendor Diversity variety of vendors establishment within given distance
- Statistical Analysis
 - Descriptive: Mean/SD Sociodemographic, dietary intake and FE variables
 - Logistic regression: associations between FE, MDD-W & NAR

Micronutrient Adequacy

FE and MDD-W

MDD-W was not significantly associated with diversity and density of food vendors within 100m - 1000m.

FE and Micronutrient Adequacy Ratios*

- · Calcium and Vitamin A adequacy were not associated with diversity and density of food vendors within 100m -1000m.
- · Zinc adequacy was negatively associated with food vendors diversity at 1000m (p<0.03).
- · Iron adequacy was associated with leafy greens vendors 200m (OR: 0.89 p=0.034); density of informal vendor 200m (OR: 0.95, p=0.023).
- · Vitamin C adequacy associated with vegetable vendor density (OR: 0.89, p=0.03).

*The models used were adjusted with age, years living with HIV, education, marital status, home gardens, wealth, head of household status.

Consumption of Food Groups

*DGLV= Dark Green Leafy Vegetable

dietary diversity.

Key Messages Dietary Diversity of PLHIV in the study area

Availability of food vendors within 100m -1000m was not associated with individual

was low (~20% adequate diversity).

Micronutrient adequacy was below 50% for Iron, Calcium and Vitamin A, while for Zinc and Vitamin C was above 50%.

In this peri-urban setting, education and wealth drive the potential of an individual to attain the recommended diet.

What needs to be done?

- Strategies to modify food environment to support access to foods that improve nutrient adequacy are needed.
 - Enable an environment for informal vendors to sell nutritious foods at an affordable price
- More research to explore other factors that might contribute to an individual's ability to respond to the surrounding food environment (education and wealth status).

[^] Data presented as mean (std dev)